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ABSTRACT

A simple and rigorous formalism is presented for describing the incoherent radiative

properties of absorption, emission, and scattering of an opaque body in local

thermodynamic equilibrium; polarization, inelastic scattering, and applied magnetic field

effects are treated in full. The radiative behavior of such a body is shown to be completely

characterized by the local bispectral bidirectional reflectivity matrix. Expressions for the

emitted and reflected Stokes vectors of the source radiation are given in terms of this

matrix. Use is made of the most general forms of the reciprocal relations and Kirchhoff's

law; derivations for these are also provided.

i

I1

S %

mm n ino mm ~ mm mnm~m~mmmmmm a



CONTENTS

Foreword....................................................

Abstract.....................................................

EXECUTIVE SUMMARY ................................................................... S-1

1. INTRODUCTION ............................................................................ 1

2. THE STOKES VECTOR ....................................................................... 3

3. THE RADIATIVE PROPERTIES p, e, AND U ............................................ 6

4. EXPRESSIONS FOR a AND e IN TERMS OF p ...................................... 8

5. THE SOURCE RADIANCE IN TERMS OF p ....................................... 11

6. CONCLUSIONS .............................................................................. 12

References and Notes ............................................................................ 16

Appendix A-- Derivation of the General Forms of Kirchhoff s Law
and the Reciprocity Relations .................................................. A-1

Appendix B- An Example "Nonreciprocal" System ...................................... B-1

Appendix C-- Discussion of Assumptions ................................................ C-1

iv

..



EXECUTIVE SUMMARY

This paper presents a formalism for completely characterizing the incoherent

radiative properties of an opaque body in local thermodynamic equilibrium. Polarization

(described by means of the Stokes vector), inelastic scattering, and applied magnetic field

effects (covering both "reciprocal" and "nonreciprocal" media) are treated in full--to our

knowledge, for the first time.

Three local material properties are separately introduced to describe the distinct

processes of absorption, emission, and scattering; these are, respectively, the absorptivity
vector, the emissivity vector, and the bispectral bidirectional reflectivity matrix. We derive

rigorous expressions for the emitted and reflected components of the body's source

radiance based on these properties. In obtaining our results use is made of the most general

forms of the reciprocal relations and Kirchhoff's law; we provide derivations for these in

Appendix A.

Perhaps our most useful result is a demonstration that the incoherent radiative
properties of an opaque body in local thermodynamic equilibrium are, in fact, completely

characterized by the local bispectral bidirectional reflectivity matrix alone, and that the

absorptivity and emissivity vectors are mere derivative properties which uniquely follow

from it. This is clearly an important result for numerical modelers who have been

erroneously assuming these properties to be independent. It is also important to note that a
knowledge of the absorptivity and emissivity vectors alone, on the other hand, does not

constitute a complete characterization of an opaque body's radiative behavior.

Our results are also important for experimentalists. For instance, we show that a
complete knowledge of the local bispectral bidirectional reflectivity, which is a 4 x 4

matrix, in general requires the separate measurement of each of the 16 matrix elements,

each of which may be a function of as many as 13 continuous varinbles (viz., spatial
position, incident and reflected directions and wavelengths, applied magnetic field, and

temperature).

Section 6 contains a discussion of a number of implications of our results.

Relevant formulas and discussion for the special (and perhaps most familiar) case of a

S-1
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"kreciprocal" body which scatters radiation elastically and which is exposed to unpolarized

incident radiation are also provided there. These results may be sufficient for readers with

limited interests.

We also present a discussion of an interesting example of a simple yet practical

",nonreciprocal" system in Appendix B.

S
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1. INTRODUCTION

The ability to characterize the radiative properties of material media is importart in

many applications, including heat transfer engineering, remote sensing, and target signature

prediction and control. A complete description must, of course, include the properties of

absorption, emission, and scattering, and must cover the polarization state, as well as the

total intensity, of the radiation involved. A complete characterization in the most general

case is quite involved. 1

An extremely important special case of the most general problem is that of

characterizing the incoherent radiative properties of an opaque body in local thermodynamic

equilibrium. In this particular case, a considerable reduction in the complexity of the

description is possible. Remarkably, a thorough treatise on this important case does not

appear to exist.2

It is our ambition here to fill this void. In particular, it is our purpose to present a

simple yet rigorous formalism for completely describing the incoherent radiative properties

of an opaque body in local thermodynamic equilibrium. Polarization (described by means

of the Stokes vector), inelastic scattering, and applied magnetic field effects (covering both
"reciprocal" and "nonreciprocal" media) are treated in full.

Three local material properties are separately introduced to describe the distinct

processes of absorption, emission, and scattering; these are, respectively, the absorptivity

vector, the emissivity vector, and the bispectral bidirectional reflectivity matrix. Perhaps

our most useful result is a demonstration that the incoherent radiative behavior of an opaque

body in local thermodynamic equilibrium can, in fact, be completely characterized by the

local bispectral bidirectional reflectivity matrix alone, and that the absorptivity and

emissivity vectors are mere derivative properties which uniquely follow from it (and which,

by themselves, do not in general constitute a complete characterization). We show that a

complete knowledge of this 4 x 4 matrix for an opaque body in general requires the

separate measurement of each of the 16 matrix elements, each of which may be a function

of as many as 13 continuous variables (viz., spatial position, incident and reflected

directions and wavelengths, applied magnetic field, and temperature). We give explicit

I



expressions for the emitted and reflected Stokes vectors of the source radiation in terms of

this matrix.

Our paper is organized as follows: In Section 2, we briefly review the Stokes
vector formalism for radiation. In terms of this formalism, we introduce in Section 3 the
bispectral bidirectional reflectivity matrix and the emissivity and absorptivity vectors. In
Section 4, we derive the absorptivity and emissivity vectors of an opaque body from the
bispectral bidirectional reflectivity matrix. In Section 5, we use the results of Section 4 to
derive a simple expression for the full Stokes vector of the source radiation of an opaque
body in local thermodynamic equilibrium; this expression is in terms of this reflectivity
matrix alone, without reference to the emissivity vector. In Section 6, we discuss briefly
some of the implications of our results. Formulas pertaining to the special (and perhaps
most familiar) case of a "reciprocal" opaque body which scatters radiation elastically, and
which is exposed to unpolarized incident radiation, are also provided there; of these,

Eq. (12') deserves special note.

In obtaining our results we make use of the most general expressions of the
reciprocal relations and Kirchhoffs law; these are derived in Appendix A. An example of a
simple yet practical "nonreciprocal" system is presented and discussed in Appendix B.
Finally, a careful discussion of assumptions is given in Appendix C.

2
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2. THE STOKES VECTOR

In this section we present a brief review of the Stokes vector formalism, 3 since it is

with respect to this formalism that we shall subsequently characterize the radiative

properties of matter. Standard convention is followed.

Incoherent electromagnetic radiation is completely described by the local spectral

directional four-component Stokes vector L(R, Q, X); here R is a position in space, 0 is
the propagation axis (the actual direction of propagation along this axis will be clear from
context), and X is the wavelength. In this article we shall be concerned only with positions

R on the surface of an opaque body. 0 will be defined by a polar angle 0 and an azimuthal
angle 0 measured with respect to the local outward-directed surface normal of the body at

X, and will itself be always taken to point away from the body.

We give an operational definition of the local spectral directional Stokes vector
(where familiarity with linearly and circularly polarizing filters is assumed), and, for

definiteness, we express its four components L0, L 1, L2, L3 with respect to the following
local Cartesian coordinates (see Figure): a z-axis in the direction of propagation; an x-axis

in the plane containing the z-axis and the surface normal, pointing away from the local
surface; and a y-axis normal to this plane so as to give an orthogonal xyz right-handed
system. L0 is then the full spectral directional radiance of the radiation (i.e., the total power

of the electromagnetic field, per unit projected area, solid angle, and wavelength); L, is the
difference F1-L 0 , where F1 is twice the spectral directional radiance transmitted by a

perfect linear polarizer which has unity transmission for the electric field components in the
x = 0 plane and is opaque to electric field components in the y - 0 plane; L2 is the
difference F2-Lo, where F2 is twice the spectral directional radiance transmitted by the

same filter as before, but which has been rotated so that the transmission plane is the x = y
plane; and L3 is the difference F3-L0 , where F3 is twice the spectral directional radiance

transmitted by a filter which has unity transmission for right-circularly polarized radiation
(electric field rotating clockwise when viewed in the direction of propagation) and is
opaque to left-circularly polarized radiation.

3
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In terms of the Stokes vector, radiation is categorized as follows (note that

from the definition of IL, it can be shown that all radiation must satisfy the
2 2 2 2

inequality L 2> L, + L- + L- ): Completely polarized radiation is characterized by a Stokes
2 2 2 2

vector with L0 = L 1 + L2 + U3; such radiation is further described as being linearly

polarized if L3 = 0, circularly polarized if L, = L2 = 0, and elliptically polarized if

otherwise. Completely unpolarized radiation is characterized by a Stokes vector with
2 2 2 2

L,= L 2 = L 3 =0. Radiation for which L+ 2 +L is neither L0 nor 0 is termed partially

polarized.

The primary advantage of the Stokes vector formalism over other possible

alternatives is additivity for incoherent radiation: The Stokes vector of an electromagnetic

field formed by spatially superimposing two incoherent fields is simply the sum of the

Stokes vectors of the individual fields. Another useful feature of this formalism is the

immediate physical significance of the component of the Stokes vector L along any vector

of the form (1, P1 , P2, P3) , where 2 + P 2 + P3 = 1: The quantity (1/2)[L.P] in fact

represents the spectral directional radiance associated with those components of the full

underlying electric field which, by themselves, form a completely polarized field described

by a Stokes vector in the direction of P. The Stokes vector of this component field is thus

(1/2)[L.P]P. Note that P is a Stokes vector which describes a completely polarized

radiation field. The photons which are associated with this field are referred to as being in

the polarization state P.

5
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3. THE RADIATIVE PROPERTIES p, e, AND a

In terms of the Stokes vector formalism, we now define three local material surface

properties of a body: the 4 x 4 bispectral bidirectional reflectivity matrix p (also known as

the Mueller or Stokes matrix for the reflection of incoherent radiation); the four-component

emissivity vector C; and the four-component absorptivity vector a:

%L(R, Qrso, DOr) = Jp(R, Or, Gi' o' Xi), L i(R, 
i, X ) cosIidQid)-i, (1)

L¢(P, 92 , Bo, 4, T) -- ., Or, B Ar)Lbb(AT, T) (2)

Lo G 9, ) =(R, C o', X L(R, •X r) (3)

In Eqs. (l)-(3), Lr, L', and L are the local spectral directional Stokes vectors

associated, respectively, with the reflected, incident, and emitted radiation; B, is any time-

independent (or very slowly varying) externally applied magnetic field; Lbbo(, T) is the

blackbody directional spectral radiance at the temperature T of the surface point R; and

L0 is the local directional spectral radiance absorbed from the incident radiation L'. The

integration indicated in Eq. (1) is to be performed over the full hemisphere of incidence

angles at the surface point R, and over all incident wavelengths. The "-" indicates a matrix

multiplication between the matrix p and the vector Li in Eq. (1) and a scalar product

between the vectors a and Li in Eq. (3).

The first component e0 of the emissivity vector it corresponds to the usual quantity

referred to in the literature as the local spectral directional "emissivity" and represents the

ratio of the local spectral directional radiance emitted by the body to that emitted by a

6
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blackbody (i.e., Lbb). Likewise, the first component a0 of the absorptivity vector a
corresponds to the usual quantity referred to in the literature as the local spectral directional

"absorptivity" and represents the fraction of the local spectral directional radiance absorbed

by the body from an unpolarized incident beam of radiation. And, finally, the quantity

P00/8(Xr-ki) corresponds to the usual quantity referred to in the literature as the local
spectral "bidirectional reflectivity" or "bidirectional distribution function" for bodies which
only reflect radiation elastically [see discussion surrounding Eq. (13) below] and represents

the local spectral directional radiance produced in reflection per unit local spectral

directional irradiance incident on the body.

We note here that the product 0Jhc)L0(R, 0, X), where h is Planck's constant and

c is the speed of light, represents the local spectral directional radiance expressed in terms

of photons (rather than energy) per unit time, projected area, solid angle, and wavelength.
We also point out that, while they are not explicitly shown as such in Eqs. (1)-(3), p, 9,

and a can be temperature-dependent quantities. Henceforth, for simplicity, we shall often

suppress T (and also R) in the argument list of other quantities as well.

7



4. EXPRESSIONS FOR a AND a IN TERMS OF p

The local quantities p, Z, and a defined in the previous section are not independent

for an opaque body. In fact, we now show, by keeping track of photons, and by using

reciprocity (in its most general sense) and Kirchhoffs law, that a and e are uniquely

determined by p. We begin by obtaining the relationship between at and p.

The number of photons in a wavelength band 0, centered on the wavelength Xi,

which are incident per unit time on a surface element dA centered on the position R of the

surface of a body, and which are arriving from a solid angle dlj centered on the direction

Di, is given in terms of the incident radiance L1 by: (X/hc)L0(Q i, X-)cosPidAdQid..

If the body is opaque, by definition all of these photons must be either reflected or

absorbed. The rate dN1 at which the photons are absorbed is, from Eq. (3), given by:

3dN 8  f0 Y (Q.i Bog X *i)(X/hc)L (Q., X)cosPidAdQidX.i
j= 3 1 j I I IL

The rate at which the photons are reflected is obtained from the first component of the

vector Eq. (1) (in differential form) by first multiplying both sides by (1/hc)cosMAdD,&X

and then integrating both sides over all reflected photon directions and wavelengths. The

right-hand side of the resulting equation for the rate dNr at which the photons are reflected

is given by (where the indicated integration is over the hemisphere of reflected angles 0

and all reflected wavelengths k, and not over the hemisphere of incident angles A. or the

incident wavelengths Xi):

=1dr=j.. 0 f P0j(n I, ), i, ),d l/hc)cos5rdAdk&%,

Equating the rate at which the photons are incident with the sum of the rate at which they

are reflected and absorbed, we have, after division through by the common factor

* ().Ac)cos~idAdAjd4j:

8
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3

L1.(CI Xj) = , r0(aT Di Do k, Xj) L'(O X.) CosI3dA,&
j=0 + c.(Op s, X ) L1 (a , X) (4)

J

Dividing both sides of Eq. (4) by L(0j, Xi), we then obtain, after simple

rearrangement:

1 - OC(Clif Bog L) - fp.o(Dr, CA,, So, k, X. cos~d~rdk

LCD, .) a(flI, Rog X.) + JP0 (alC ., kX os,~

Since Eq. (5) must hold for any physically realizable Stokes vector L', each of the

terms in [L(Q i, X.)/L0(0, i)] must vanish individually; thus, the coefficient of each term

must be identically zero and we must require:

%o(Di, ]B, i) = 1 - JP00($rV , 1, ' , Xi)cosPrrdrdr

ai(Cli' B 0o i) = - J P0 j(r ' Dig B., , Xi)cos rd CIrd r ; j = 1,2,3 (6)

We now make use of reciprocity and Kirchhoff s law to obtain the relationship

between a and p. The general reciprocal relations on p follow from microscopic

reversibility arguments (see Appendix A):

Xi Lbb(;Li' T)Pjk(DOT, i' " BO, Lr 8)2 (-1) 2  )Pkj(DI -401 ) X (7)

where j, k = 0, 1, 2, 3 and where jk is the Kronecker delta. Kirchhoffs law, itself a

reciprocity relation between the absorptivity and emissivity, follows from similar

reversibility arguments (see Appendix A):

9
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a(0,B, X, ) = H-) 2 (C-, k ,X) (8)

forj = 0, 1, 2, 3.

The dependence of the terms on opposite sides of Eqs. (7) and (8) on opposite
signs of the applied magnetic field Bo is to be noted. The expressions as written represent
generalizations of the reciprocal relations and Kirchhoffs law to include "nonreciprocal"
materials (i.e., media whose radiative properties are dependent on the direction of Bo), as
well as materials of the far more familiar "reciprocal" variety (i.e., media whose radiative
properties are independent of the direction of B.). Equations (7) and (8) enable
"nonreciprocal" materials to exhibit some rather interesting and unusual behavior; we
discuss an example in Appendix B.

Inserting Eq. (7) into the right-hand side of Eq.(6) and inserting Eq. (8) into the
left-hand side of Eq. (6), we then obtain:

E( ,,Bo,.) fPoo(Qr, oi  , ,, Xi) )iLbb('i) cosPid.idxi

=rLbb(Xr)

Ej( r3 0 , Xr) ---- -f Pjo(r , Do, X'rXi) XrLbb(O.) cos~idQid i ; j = 1,2,3. (9)

Equations (9) and (6) demonstrate explicitly that the local spectral directional
emissivity t and absorptivity a are properties of an opaque body which are derivable from
the local bispectral bidirectional reflectivity p alone.

10
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5. THE SOURCE RADIANCE IN TERMS OF p

We may use Eq. (9) to obtain a most compact and simple expression describing the
combined emitted and reflected source radiation leaving a point R on the surface of an
opaque body. The full local spectral directional Stokes vector L of the source radiation is
simply the sum of the emitted and reflected local spectral directional Stokes vectors:

L =L e + L .(10)

If we substitute into Eq. (10) from Eqs. (1), (2), and (9) and define modified
Stokes vectors L and L' as

L= L-Lbb LJ

i=Li Lbb (11)

where Lbb is the blackbody spectral directional radiance at the temperature of the surface
point, we obtain finally:

4 L(R, art og r, T ) JP (R,Q r, Gig 301 )ri Xi) * x, Lr i(R Qi, )is T)cosidfidLi . (12)

The similarity in form of this result to Eq. (1) is to be noted; its simplicity should

make it fairly easy to remember.

11
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6. CONCLUSIONS

In this section we discuss some of the implications of our results.

The degrees of freedom of p. We have demonstrated that the incoherent
radiative properties of an opaque body are completely characterized by the local bispectral

bidirectional reflectivity matrix p. Aside from the reciprocal relations of Eq. (7), it can be
shown that the elements Pjk of this matrix are in general only constrained by a set of
inequalities.4 Hence, aside from the factor-of-two reduction in data afforded by Eq. (7), a
complete characterization of the local radiative properties of an opaque body in general
requires measurement of all 16 elements Pjk, each of which is in general a function of 13
variables (viz., R, ir, Gi, Bo, , i,T). We also note, however, that everyday surfaces
usually show significant dependence on only a few of these. For instance, surfaces
typically reflect radiation with virtually no change in wavelength (i.e., elastically); thus,

ordinarily, an exceedingly good approximation is

p(R, Qri' Bo' r, i) = p'(R, r, i' B., A,) 8( - 'i) , (13)

where 8 is the Dirac delta function and p' is known as the local spectral bidirectional
reflectivity matrix. Furthermore, p' itself can for many simple surfaces often be regarded
to be a function of only four variables (i.e., Pr, 3,, "i' and Xr).

If, for instance, we confine our attention to the simple but commonly encountered

situation of an elastically scattering, "reciprocal" opaque surface exposed to unpolarized
radiation, and if we are interested only in the radiance (without regard to polarization state)

of the radiation leaving the surface, the only relevant material properties are

ao0 E0, and p. Some relevant local formulas for this special case are [from Eqs. (6)-(9)
and (12), respectively]:

0(Qr, .) 1- fp 0(ai, Or, X)cospiiC i , (6')

12
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P'0 (, Qi, X) = P,0(Dl, 0r X) , (7')

ao(Ir, X) = Co(D, X) , (8')

eO(ar, .) = 1 - f p 0 ( A, Ci, X)coslidCA '(9')

L O(Op XT) = 11,b(X, T) + fJPo0ort Ci' X)[l4(0i, X) - Lb(X T)] cosI3.dD., (12')

where we have been able to suppress Do and subscripts on X.

The use of p in predicting the results of reflection measurements. It

is a trivial matter to calculate the output spectral directional radiance from any local

reflection measurement, once the bispectral bidirectional reflectivity matrix is known. For

example, a typical experiment might be performed as follows. A polarizing filter which

selects the polarization component along I = (1, I1, 12, 13), where we have I + e + I = 1,

is placed in the path of an incident beam with local spectral directional Stokes vector L1 .
The incident beam is directionally filtered so that it arrives only within the small solid angle

d~j centered on the direction Cli, and it is spectrally filtered so that it contains wavelengths
only within a small band d centered on the wavelength ,i. (The irradiance of the beam

incident on the first polarizing filter is thus LcospidDid~) A second polarizing filter

which selects the polarization component along 0 = (1, 01, 02, 03), where we have2 2 2ff
+ 02 + &_= 1, is placed in the path of the desired output direction CAr, in front of a

radiation detector. From the formulas given at the end of Section 2 and from Eq. (1), the

spectral directional radiance dl o at wavelength Xr which would be measured by the

detector in this experiment is given by the simple expression

UT
dL0 - (1/4)(0-po1)(1.',)(XM ,)cosididXi . (14)

13
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(Conversely, p itself is generally obtained by measuring this quantity for a complete set of

independent choices of I and 0, as well as for all other variables upon which p depends.)

A further constraint on a and a for opaque bodies. For nonreciprocal

media, Eq. (8) allows the interestirg possibility that, for a given direction Ck, wavelength

A, and applied magnetic field B., the absorptivity and emissivity are independent; for

instance, a 0 can be unity and e0 zero, or vice versa (for an example, see Appendix B). For

opaque bodies, however, there exists a global constraint between O0C and C0 for a given

applied field B, since from Eqs. (9) and (6) we have

£O(Or, mo, Xr, T) = 1- fP0(Qr, Up P, )Ir, )  cos[ijdQdXiXrLbb(A,T)

ao(Or, Bog Xrg T) = 1- fPoo(mi , ar, Bog , Xir)cospid~idXi , (15)

from which it follows that:

fTLbb('Xr, T)Uz(Ql, Bo, X, T)cosjrdildXr -

fXrLbbA T) r:O(Llr, Bg1r, X T)CoSrdLrd). (16)

Absolute bounds on the source radiance Lo of an opaque body. While

a complete characterization of the radiative behavior of an opaque body in general requires

knowledge of p, the local source spectral directional radiance can, in fact, be bounded if

only the local spectral directional emissivity eo is known. As an example of the type of

inequality that can be obtained, we again consider the common situation where all incident

radiation is unpolarized, and the body scatters radiation elastically; tnen, from Eqs. (1) and

(13):

Lo(Q,, Do, X) = fp 0(Qkr Qi, Do, X) Lo(OQ, X) cospidQ i  (17)

14



Since P 0 is necessarily a nonnegative quantity, Lo must satisfy:

i max
L0  ()fP6(QrI Di, Bo0, X) cosidQi

i.min t

L0  (X)JOp6o(Qr, i' o' X) cospidti (18)

imax i'min

where Lo  (k.) and Lo  () are, respectively, the maximum and minimum values of
L2o(Ci , X) with respect to Di at each X. Substituting from Eq. (9), the preceding inequality
can be rewritten as:

i,max
Lo  (.)[1 - Co(flr, Bo, 01

>: LO(a , Bog ;.)>

i,min

Lo  ()[1 - EO(Lk, Bo, .)] (19)

Finally, using Eqs. (10) and (2), we obtain our desired result:

imax i,max
Lo  (;) + [1 bb ;,") - Lo  (;)]0(C1, Bo, ;)

2! Lo(CP DO, X, T)

imm imin
Lo  (;) + [Lbb(,T) - Lo  (')]o(Qr, BO, X) (20)
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APPENDIX A
DERIVATION OF THE GENERAL FORMS OF KIRCHHOFF'S

LAW AND THE RECIPROCITY RELATIONS

In this Appendix we provide a derivation of the complete expressions of
Kirchhoff's law and the reciprocity relations on p, including polarization, inelastic
scattering, and applied magnetic field effects. While we are aware of the existence in the
literature of partial versions of these laws,1 2 to our knowledge the most general forms and

their derivations have not appeared previously.

Kirchhoff's law and the reciprocity relations on p are physical constraints on the
radiative properties of matter which follow solely from the form of the fundamental
microscopic equations of motion that govern the behavior of all physical systems. The
form of these equations is such that the simultaneous substitutions +t -+ -t and +B --+ -B
(where t is the time and B is the magnetic field) leave the equations unchanged. This
invariance implies that for every "forward" solution to the equations of motion there is a
"reverse" solution; viz., if a system can evolve through a sequence of instantaneous
microscopic states in one order (e.g., the "forward" one), and if all the externally applied
magnetic fields are first reversed, the system can also evolve in the opposite order through
microscopic states identical to those of the "forward" solution, except that the magnetic
field B has everywhere the opposite sign.3

Since the electric field E does not change sign between corresponding "forward"
and "reverse" solutions, the Poynting vector (B x B) does. Therefore, corresponding
radiation fields propagate in opposite directions in systems evolving according to the two
solutions. In particular, it is evident that the local spectral directional radiation which is
emitted from matter at time +t in a system evolving according to a particular "forward"
solution corresponds with and is identical to the local spectral directional radiation which is
absorbed by the matter at time -t in a system evolving according to the corresponding

"reverse" solution (and vice versa), except that the directions of propagation of these two
radiation fields are reversed. We note here that, as may easily be seen from the definition
of the Stokes vector, a field which is described by the Stokes vector L = (L0 , L1, L2 , [,3)
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when it is regarded as propagating with respect to +t is described by the Stokes vector

L* = (L0 , L 1,-L 2, L3) when it is regarded as propagating with respect to -t (i.e., when

time is reversed).

We now consider two macroscopically identical enclosed cavities, each in

thermodynamic equilibrium at temperature T. The cavities, by construction, differ only in

that a time-independent magnetic field -B. is externally applied to the first, while +B. is

applied to the second, and in that the first cavity is evolving microscopically according to a

"forward" solution of the equations of motion, while the second is evolving according to

the corresponding "reverse" solution.

Since the electromagnetic radiation being emitted in the first cavity at time +t must
be strictly identical to the electromagnetic radiation being absorbed in the second cavity at

time -t (again, except for a reversal of the direction of propagation), the amplitude of each
polarization component of the local spectral directional electric field being emitted in the

direction Qr at wavelength X, in the first cavity at time +t must, individually, equal the

amplitude of the corresponding polarization component of the local spectral directional

electric field being absorbed from the direction Gi at wavelength 4 in the second cavity at
time -t. Also, since the cavities are in thermodynamic equilibrium, all microscopic

processes must, in fact, be stationary; hence, the time-averaged amplitude and the radiance
(which is simply proportional to the square of this amplitude) associated with each

polarization component of the local spectral directional electric field being emitted or

absorbed in either cavity must be independent of time. We are therefore led to the

following important relation concerning emission and absorption in the two cavities: The
local spectral directional radiance associated with each polarization component of the

electric field emitted in the first cavity must equal the local spectral directional radiance

associated with the corresponding polarization component of the electric field absorbed in

the second cavity.

Now, from the discussion at the end of Section 2 we know that the emitted local

spectral directional radiance in the first cavity which is associated with the polarization

component of the electric field described by any Stokes vector P of the form
(1, PI, P2, P3), where P2 + P! + P! = 1, is given by the quantity (1/2)Lee P. From

Eq. (2) this may be rewritten as (l/ 2 )Lbb(Xr, T)[S(R, 1r, -o ) * P, which for

convenience we shall call E.

Likewise, from Section 2 and Eq. (3), we know that the absorbed local spectral
directional radiance in the second cavity which is associated with the polarization

A-3
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component of the electric field described by the Stokes vector P* = (1, P1, -P 2' P3) is

given by the quantity (R, O,, +B o, 1) (l/2)[L i P*]P* which we shall call A.

Furthermore, since the cavity is in equilibrium, we know that the radiation incident at each

point on the walls of the cavity is blackbody radiation; viz., L' = Lbb(l, 0, 0, 0); thus, A

can be rewritten as (1/2)L•b(k, T)[c(R, Qk, P*].

Since P* is the time-reversed version of the Stokes vector P, the reciprocity relation

between emission and absorption in the two cavities requires A = E. As this equality must,2 2 .2

in fact, hold for all choices of P1, P2, and P3 for which P2 + P2 + = 1, we obtain finally

at each point R on the walls of either cavity (for j = 0, 1, 2, 3):

C (Qr, Bo, Xr) = (-) '2(r, -Bo, Xr) , (8)

which is known as Kirchhoffs law. We have obtained this law under the assumption that

the radiation incident on the walls of the cavities is in actual equilibrium with the walls;

however, as it is a relationship on the local material properties of the walls alone, it is

evident that Eq. (8) will remain valid for arbitrary radiative environments so long as the

material comprising the surface of the walls is itself in local thermodynamic equilibrium.

By the same token, the validity of Eq. (8) extends to applied magnetic fields Bo which are

time dependent but which vary sufficiently slowly that the radiating medium maintains a

state of local thermodynamic equilibrium at each instanL4

We have discussed above the absorbed part of the incident electromagnetic field and

how it corresponds to the emitted field in a macroscopically identical system that is

evolving microscopically according to the "reverse" solution of the equations of motion.

We now return to the two enclosed cavities and discuss the reflected part of the incident

electromagnetic field. Because reflection is a process which inherently involves more than

one direction and can involve more than one wavelength, we find that we must now keep

track of photons, rather than the radiance alone.

We begin this time by considering a point on the wall inside the second cavity. As

in the discussion above, since the cavity is in thermodynamic equilibrium, the radiation

field incident on this point must be blackbody radiation. From Eq. (14), then, the rate dN42
(per unit surface area) at which photons associated with polarization state I in the small

A-4

I kIA



spectral band d and from the small solid angle dQi are reflected into the small solid angle

dk with polarization state 0 in the small spectral band dA, is given by:

X42 = (1/4)[0 ' p(Cr , R,+,, .i
) - I](/hc)Lbb(;,i, T)cosid1I'd .cOsPrd •

Likewise, at the corresponding point in the first cavity, the rate dNi1 (per unit

surface area) at which photons associated with the polarization state 0* in the small spectral

band d and from the small solid angle d~r are reflected into the small solid angle dQi

with polarization state P* in the small spectral band dA is given by:

dlN 1 = (I/4)11* - P(Qi' Cir, -Do, Xj, Xr) - O*](X,/hc)Lbb( ,, T)cos ,d ,dkcosPd i'•

From our previous discussion concerning corresponding radiation fields in systems

evolving microscopically according to corresponding "forward" and "reverse" solutions to

the equations of motion, it should be evident that dN 1 and dl 2 in fact represent the photon

flux rates (associated with any two polarization components of the fields involved in the

reflection) of two such corresponding fields. Therefore, dN and d"2 must be equal.

Since the equality must hold for any choice of polarization components, we must have,

finally, at each point on the walls of either cavity (for j, k = 0, 1, 2, 3):

X iLbb(Xis T)Pjk(Or' i vo B 'r1 i) = (-1) 2j +8 rLbb(r, T)Pkj(Qi, , -BO, i, X,). (7)

Equation (7) expresses the generalized reciprocity relations on p. Restrictions on

the validity of this result are the same as those discussed above in connection with

Kirchhoffs law.
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3. Systems whose microscopic evolution is independent of the sign of the applied
magnetic field are termed "reciprocal". This term is also used, however, to describe
systems whose macroscopic properties of interest are independent of the sign of the
applied magnetic field (even though aspects of the microscopic evolution may not be).

4. A point perhaps worthy of some elaboration concerns the distinction between the
applied magnetic field D. and the magnetic field associated with the incident electro-
magnetic radiation. The distinction between these two fields is, in fact, solely a matter
of separation of time scales: We are interested in describing the radiative behavior of
material media on a time scale which is long compared with the wavelength period of
the "incident" radiation, but which is short compared with the characteristic time for
variations in B.. Indeed, the Stokes vector formalism, as we have employed it in this
article, is inherently intended to describe the outcome of measurements which integrate
over many oscillations of the incident electromagnetic field, but which sample the
applied field instantaneously.
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APPENDIX B
AN EXAMPLE "NONRECIPROCAL" SYSTEM

As a simple and practical example of a "nonreciprocal" system we discuss a device

known as a radiation isolator. This device is transparent to radiation incident from

one direction and opaque to radiation incident from the opposite direction--a true one-way

filter--and is useful in preventing feedback between elements in an optical system.

We consider here one type of isolator that consists of three elements in series: a

linear polarizer; a Faraday rotator adjusted to rotate the polarization plane of an incident

linearly polarized beam by +45 deg; and a second linear polarizer whose transmission plane

is rotated by +45 deg with respect to the first polarizer. Both polarizers absorb (rather than

reflect) the radiation they do not pass.

The key element of the isolator is the Faraday rotator, which has a magnetic field

Bo externally applied along the propagation axis and is the actual "nonreciprocal"

component. (A wide variety of solids, liquids, and gases exhibit the Faraday effect, but

glasses are ordinarily employed as the media of choice as they typically produce the largest

rotation angle for a given field strength.) A Faraday rotator is a nonabsorbing device which

causes linearly polarized radiation incident from one direction to be rotated in a right-

handed sense, and linearly polarized radiation incident from the opposite direction to be

rotated by an equal amount in a left-handed sense. Reversing the direction of B causes the

senses of rotation to be exchanged.

We confine our attention to the radiative properties of the isolator as viewed from

one side along the normal propagation axis. The coordinate system for defining the Stokes

vector can be arranged so that incident radiation with Stokes vector (1, 0, 1, 0) passes

through the isolator without attenuation, whereas incident radiation with Stokes vector (1,

0, -1, 0) is entirely absorbed by the first polarizer. The absorptivity vector for the isolator

is thus simply that of the first polarizer:

1 ~/2J
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The emission from the isolator, on the other hand, is completely unpolarized, as can

be readily seen. The emissivity of the first polarizer alone is (1/2, 0, 1/2, 0). The second
polarizer, by itself, would have emissivity (1/2, -1/2, 0, 0); however, after passage

through the Faraday rotator, the plane of polarization of the emitted radiation from the

second polarizer is rotated and passes without attenuation through the first polarizer.

Hence, the emissivity vector contributed by the second polarizer to the isolator is (1/2, 0,
-1/2, 0). The full emissivity vector of the isolator is, in this case, simply the sum of the

contributions of the two polarizers, and is therefore:

1
0 ) = 0

We have thus obtained the interesting result that along the propagation axis the isolator

emits unpolarized radiation, exactly like a blackbody, even though it is completely

transparent to radiation with Stokes vector (1, 0, 1, 0).

If the direction of the magnetic field applied to the Faraday rotator is reversed, the
plane of polarization of the emitted radiation from the second polarizer is rotated in the

opposite sense and is blocked by the first polarizer. The second polarizer thus makes no

contribution to the emissivity vector of the isolator, and the emissivity of the isolator is

simply that of the first polarizer.

1/2

Summarizing, we have obtained for the isolator

CV o) (D()Oo),

which is in agreement with Eq. (8). p
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APPENDIX C
DISCUSSION OF ASSUMPTIONS

In obtaining the results of this ai dcle we made three main assumptions, which are
listed here:

1. We assumed the surface of the opaque body to be in local thermodynamic
equilibrium. This assumption enables us to define a temperature at each
position R (on or near the surface) and is valid in all but the most extreme of
radiative environments. 1

2. We assumed multiphoton processes to be negligible. This assumption was
made in writing Eqs. (1) and (3), and insures that reflection and absorption are
processes linear in the Stokes vector of the incident radiation. As is the case
for our first assumption, this assumption is also valid except when the incident
electromagnetic fields are enormously strong.

3. Finally, we assumed the existence of a certain length scale I for the opaque
body. In particular, we assumed it to be conceptually possible to subdivide the
surface into elements with sides of length I which are, at the wavelengths of
interest, (a) sufficiently small that: (1) each element is effectively planar,
(2) each element has a temperature which is effectively uniform across it (and
throughout a thickness below it large compared with the penetration depth of
the incident radiation), and (3) the incident radiation at any given angle of
incidence is effectively uniform across each element; and (b) sufficiently large
that effectively all externally incident radiation is either absorbed or reflected
back out of the same element into the hemisphere above. (We note that the
existence of I may, in fact, be regarded as a technical criterion for opacity,
rather than an additional assumption.)
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